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ABSTRACT
Recent advances in click model have established it as an
attractive approach to infer document relevance. Most of
these advances consider the user click/skip behavior as bi-
nary events but neglect the context in which a click hap-
pens. We show that real click behavior in industrial search
engines is often noisy and not always a good indication of rel-
evance. For a considerable percentage of clicks, users select
what turn out to be irrelevant documents and these clicks
should not be directly used as evidence for relevance infer-
ence. Thus in this paper, we put forward an observation that
the relevance indication degree of a click is not a constant,
but can be differentiated by user preferences and the context
in which the user makes her click decision. In particular, to
interpret the click behavior discriminatingly, we propose a
Noise-aware Click Model (NCM) by characterizing the noise
degree of a click, which indicates the quality of the click for
inferring relevance. Specifically, the lower the click noise is,
the more important the click is in its role for relevance in-
ference. To verify the necessity of explicitly accounting for
the uninformative noise in a user click, we conducted exper-
iments on a billion-scale dataset. Extensive experimental
results demonstrate that as compared with two state-of-the-
art click models in Web Search, NCM can better interpret
user click behavior and achieve significant improvements in
terms of both perplexity and NDCG.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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Algorithms, Measurement, Experimentation
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1. INTRODUCTION
Modeling user behavior recorded in search engine click-

through logs is attracting more and more attention in in-
formation retrieval research, since user click behavior seems
to be an excellent source of encoding user preferences to
search results. Furthermore, in industrial search engines,
click-through logs can be collected at a very low cost. This
makes the modeling scalable and practical to better under-
stand user favorites. Consequently, many attempts have al-
ready positioned it as an appealing area and formalized this
issue of learning document relevance from click-through logs
as a click modeling problem.

Although click-through logs are very informative, a well-
known challenge for click modeling is position bias, where
it states that a document appearing in a higher position
is more likely to attract more user clicks even though it is
not as relevant as other documents appearing in lower posi-
tions. Thus, the often used metric click-through rate (CTR)
is not an exact measure of document relevance. An effective
click model needs to alleviate position bias. This bias was
firstly noticed by Granka et al. [11] in their eye-tracking
experiments and a lot of research since then has proposed
to correct it and infer an unbiased relevance. Thereafter,
Richardson et al. [18] proposed to increase the relevance
of documents in lower positions by a multiplicative factor;
Craswell et al. [8] later formalized this idea as the exami-
nation hypothesis which states that a document is clicked if
and only if it is both examined and relevant.

Under the examination hypothesis, given a document that
has been examined, its relevance is exclusively determined
by its CTR. Thus, for each click in the logs, it contributes
to the CTR and directly plays a positive impact on increas-
ing the relevance of a clicked document. Perversely, after
carefully examining the real user click behavior in an in-
dustrial search engine, we observed that user click behavior
is often complex and noisy. It is far from ideal that every
click is informative and can be a good indication of rele-
vance. Rather, we show that there is a considerable amount
of noise in clicks and some clicked documents turn out to be
irrelevant documents. Obviously, the existence of click noise
may hinder click models to infer an accurate document rel-
evance. Yet, most of the existing works on click model only
treat each click as a binary event (click or not) but disre-
gard the noise or quality born with it. This may result in
their research being based on unreliable user click signals for
relevance inference.

In this paper, we put forward an observation that not



all clicks are equal and not all clicks are good indications
of relevance. Rather, we illustrate the complex causes of
a click and the necessity to characterize the noise in each
click. To capture the click noise, we propose a Bayesian
model called Noise-aware Click Model (NCM). NCM is de-
signed to complement the click data with the human judged
data so as to learn a predictor to characterize click noise.
NCM is also capable of predicting the noise of large-scale
clicks without human judged data by exploiting the user
preferences and the context in which a user makes her click
decision. Different from previous research in click modeling,
NCM assesses the noise of each click and encourages the
high quality clicks with less noise to play an important role
in relevance inference. In addition, NCM is the first attempt
to incorporate both click data and human labeled data to-
gether in learning a click model thus can be regarded as
a semi-supervised model. We developed NCM as a general
model which makes it capable of embracing the assumptions
of most existing click models. Especially, we successfully
extended NCM to embrace the assumptions of two state-of-
the-art models in Web search. To verify the effectiveness of
NCM, we conducted experiments on a billion-scale industrial
dataset. Extensive experimental results demonstrated that
NCM can achieve consistent and significant improvements
in terms of both perplexity and NDCG.

The rest of the paper is organized as follows. In Section
2, we briefly introduce the preliminaries of click models and
summarize the related work. We introduce the methodology
in Section 3 and the NCM in Section 4. Finally, we conduct
comparison experiments in Section 5 and conclude the paper
in Section 6.

2. PRELIMINARIES & RELATED WORKS
Before delving into hypothesis details, we begin by intro-

ducing some definitions and background that will be used
throughout the paper. A user starts a query session by is-
suing a query to a search engine, the search engine returns
M (usually M = 10) ranked documents in a Search Engine
Result Page (SERP). We use dφ(i) to indicate the document
ranked at the position i. We assume all documents are in-
dexed and di is the i-th document. Here we use a mapping
function φ to represent the document at position i. The
user then examines the SERP and clicks on some or none
of the documents. Clicks on sponsored ads or other web el-
ements such as query suggestion results are not considered
in our query session. Any subsequent query re-submission
or re-formulation will be regarded as initiating a new query
session. It is worth noting that there exist different defini-
tions of a user session in prominent literature. Thus in this
paper, we differentiate them by query session and search ses-
sion, where a query session only contains the actions related
to a single query, while a search session includes all the ac-
tions a user undertakes to perform a search task, which may
include one or more query sessions, multiple query reformu-
lations and clicks under different queries.

In click models, examinations and clicks are treated as
probabilistic events. For a particular query session, we use
a binary random variable Ei = 1 to indicate that the docu-
ment at position i is examined and otherwise Ei = 0. Simi-
larly, we use Ci = 1 to indicate the document at position i
is clicked and otherwise Ci = 0. Therefore, P (Ei = 1) indi-
cates the examination probability for position i and P (Ci =
1) is the corresponding click probability.

2.1 Examination Hypothesis
The examination hypothesis assumes that a displayed doc-

ument is clicked if and only if this document is both exam-
ined and relevant. In the literature[6, 20, 25], if the docu-
ment is examined, the perceived relevance of a document is
a query-specific variable which directly measures the likeli-
hood that a user will click this document. More precisely,
given a query q and a document dφ(i) at the position i, the
examination hypothesis assumes the probability of the bi-
nary click event Ci as follows:

P (Ci = 1|Ei = 0) = 0 (1)

P (Ci = 1|Ei = 1, q, dφ(i)) = aφ(i) (2)

where aφ(i) measures the degree of relevance between query
q and document dφ(i). Obviously, aφ(i) is the conditional
probability of a click after examination. Thus, the Click-
Through Rate (CTR) is represented as

P (Ci = 1) = P (Ei = 1)︸ ︷︷ ︸
position bias

P (Ci = 1|Ei = 1)︸ ︷︷ ︸
document relevance

(3)

where CTR is decomposed into position bias and document
relevance.

Following the examination hypothesis, given the condition
P (Ei = 1), the relevance of the document is a constant
value. However, a challenge in this decomposition is that
whether a document is examined or not is not observable
from click-through logs, so subsequent click models try to
formalize this examination event as a hidden variable and
make different assumptions to deduce its probability.

An important extension of the examination hypothesis is
the user browsing model (UBM). It assumes that the exam-
ination event Ei depends not only on the position i but also
on latest clicked position li in the same query session, where
li = max{j ∈ {1, · · · , i− 1} | Cj = 1}. It introduces a series
of global parameters βli,i to measure the transition proba-
bility from position li to position i. Formally, the UBM is
characterized by the following equations:

P (Ei = 1|C1:i−1 = 0) = β0,i (4)

P (Ei = 1|Cli = 1, Cli+1:i−1 = 0) = βli,i (5)

P (Ci = 1|Ei = 0) = 0 (6)

P (Ci = 1|Ei = 1) = aφ(i) (7)

Here li = 0 if there are no preceding clicks. The term Ci:j =
0 is an abbreviation for Ci = Ci+1 = · · · = Cj = 0.

A similar work to UBM is Bayesian browsing model (BBM)
[17], which adopts a Bayesian approach for inference with
each random variable as a probability distribution. This is
similar to the work on the General Click Model (GCM)[28].
It extends the model to consider multiple biases and shows
that previous models are special cases of GCM.

2.2 Cascade Model
The cascade model assumes that users always examine

documents from top to bottom without skipping. There-
fore, a document is examined only if all previous documents
are examined. For an examined document, whether it is
clicked or not still depends on its relevance. But the click
events depend on the relevance of all the documents shown



above. Formally, the cascade model can be formalized as:

P (E1 = 1) = 1 (8)

P (Ei+1 = 1|Ei = 0) = 0 (9)

P (Ci = 1|Ei = 1) = aφ(i) (10)

P (Ei+1 = 1|Ei = 1, Ci) = 1− Ci (11)

Eq.11 implies that a user will abandon the query session
if she finds a desired search result; otherwise she always
continues the examination. This simultaneously reveals that
it can only be applied to query sessions with one click at
most. Yet this is too strict for real logs with multiple clicks
in a query session.

Subsequently, the DCM, CCM and DBN are introduced
to deal with the multiple clicks within a query session. The
dependent click model (DCM) [13] introduces a set of global
position-dependent parameters to represent the probability
of examining the next document after a click. Click Chain
Model(CCM) [12] continues to model the relationship be-
tween the examination probability and the relevance of pre-
vious documents. The Dynamic Bayesian Network (DBN)
[6] model emphasizes that a click does not necessarily in-
dicate user’s satisfaction with the document. Instead, the
user may have been attracted by some misleading snippets,
including the title and summary, to trigger a click. Hence,
it distinguishes document relevance as perceived relevance ai
and actual relevance si. Whether a user clicks a document or
not depends on its perceived relevance and whether the user
is satisfied with the document or not depends on the actual
relevance. If the user is satisfied with the clicked document,
she will not examine the next document. Otherwise, there
is a probability 1− γ that the user abandons her query ses-
sion and a probability γ that the user continues her search.
Thus, DBN replaces Eq.11 as follows:

P (Si = 1|Ci = 0) = 0 (12)

P (Si = 1|Ci = 1) = sφ(i) (13)

P (Ei+1 = 1|Si = 1) = 0 (14)

P (Ei+1 = 1|Ei = 1, Si = 0) = γ (15)

Where Si is a hidden event indicating whether a user is sat-
isfied with the document dφ(i). The values ai and si are esti-
mated by applying the expectation-maximization algorithm
in the original paper, while there exists a probit approach
to infer the model introduced in [26].

2.3 Externalities and Others
Unlike the UBM model and the other models following

the cascade assumption, which assumes that the examina-
tion event will only be affected by the documents shown
above, externalities consider that the click behavior in a
position will be simultaneously affected by the documents
below. Two recent works [20][24] have conducted good ex-
periments to demonstrate this phenomenon in online adver-
tising and developed models to characterize it. [24] verified
the existing of externalities based on two advertisements and
modeled their competitive property as attracting a user for
a click. Work[20] studied the externalities in online adver-
tisements with respect to the clicks in other below positions
and stated that the relevance of a document is not a con-
stant but affected by clicks in other positions. This factor
was also observed in an experimental finding in a previous
work [4]. It is pointed out that the CTR of an advertisement

can be affected by the quality of other advertisements shown
together. It is obvious that externalities exist in online ad-
vertising and most of the previous works are motivated by
observations from the advertisement instead of general Web
Search. As compared with the general Web Search, the num-
ber of advertisements in a SERP is smaller and users may
have a more commercial intent when clicking on an adver-
tisement. This may encourage users to conduct more com-
parison between advertisements.

There are four other models that are not part of previous
assumptions. The whole page click model (WPC)[7] inter-
prets user click behavior in the whole page, including both
the search and ads. The post-click click model (PCC)[27]
captures user post-click behavior after the click. The Session
Utility Model (SUM) [10], given a single query, measures
the relevance of a set of clicked documents as the proba-
bility that a user stops the query session. The intent-bias
model [14] demonstrates the existence of multiple intents for
a same query and extends UBM and DBN to characterize
the diversity of search intents in click models.

2.4 Modeling Context
Contextual information has been utilized by many appli-

cations and previous works have already demonstrated its
usefulness in understanding user behavior. [1] used the con-
textual information as features to improve Web Search rank-
ing. [22] represented the contextual information as ODP
categories and used them to predict user short-term inter-
ests. [23] considered how users reformulate queries and used
this information for Web search ranking. [3] leveraged the
contextual information to better model query completion.
[9] utilized the contextual user behavior in organic search to
characterize the user behavior in sponsored search. [19] used
the contextual information for recommendation systems and
showed its effectiveness in collaborating filtering problem.
Our work differs from these studies. First, we are working
on a click model problem to automatically infer document
relevance based on user click behavior. Second, we focus
on utilizing the contextual behavior and user preference to
understand click noise and then qualify a click for inferring
a more accurate relevance.

3. THE DATA & METHODOLOGY
Previous works have already illustrated the complexity

of user behavior and the challenges to interpret click data
[22, 19], since the cause for a user to perform a click may
be complex and varied. She may be attracted by a snip-
pet, or just want to explore some information need with a
strong uncertainty. Whenever we are aiming to interpret
the complex user click data in a commercial search engine,
there is no doubts that click data are not extremely clean.
To let the real data speak for this, we first collect a hu-
man judged dataset containing 474,185 judged documents
and collect 16.18 million clicks on these documents. We
then classify all these clicks based on the relevance rating
of judged documents, from Bad, Fair, Good, Excellent to
Perfect. We present the relationship between the number of
clicks and each corresponding rating in Figure 1. The x-axis
indicates the relevance degree from irrelevant to the most
relevant and the y-axis illustrates the density distribution
of this click data. It clearly shows that there are less than
35% clicks on perfect documents. If we treat Bad and Fair
in judged ratings as irrelevant, there are more than 28% of



Figure 1: The distribution of click quality.

clicks on irrelevant documents. This clearly shows that there
exists a considerable amount of noise in click data, i.e, not
all clicks are good indications of document relevance.

To characterize the noise of a click, we complement click
data with human judged data. The human judged dataset is
collected from a commercial human relevance system (HRS),
where it randomly picks up a set of representative queries
and requires judges to give a rating denoting the relevance
between a query and each of its corresponding documents.
If we treat this human judged data as ground-truth, we may
classify all the clicks on judged documents into two cate-
gories. For a click on a document which is judged as rele-
vant in the HRS system, we define it as a noise-free click;
otherwise it could be a noisy click since the click might not
bring a good indication of relevance. If we can have the
judged rating for each clicked document, we can identify the
noise of each click easily. However, the size of the queries
in the HRS system is very limited due to the high cost of
manual judgement. Even if we are using a HRS set which
is used to evaluate the performance of a commercial search
engine, it only contains 12,590 queries. While in the click
through data for one month, there are billions of queries
and clicks. Apparently, compared with the HRS data, click
data are much larger in scale and can be collected with a
much lower cost. Given the HRS data as the ground-truth,
this can be vividly represented as a semi-supervised learn-
ing problem where small portion of click data are labeled
but most data are unlabeled. Hence, a big challenge is to
generalize the limited HRS labeled data to understand the
noise in each click, and then we may use it to infer a more
accurate relevance via click models for large-scale unlabeled
queries.

Our methodology is to design a model to leverage the
user preference and contextual information as features for
this generalization. We list them in Table 1, which can be
classified into two categories. The Context class specifies
the contextual information in which users make the click
decision, such as its previous queries and click information
in these queries. The User class characterizes the historical
behavior of a user, such as her average click or skip behavior
for documents in other search sessions. Based on the limited
labeled documents in HRS, we classify all the clicks on them
into two categories: noise-free click and noisy click. The
task in the training is to learn a predictor to characterize
the relationship between values of the features mentioned
above and the degree of a noise. With this predictor learnt
in the training phrase, we may predict the noisy degree for

large-scale unlabeled click data. The challenge lies in how
to learn this predictor effectively with consideration of the
assumptions in click models. The details will be presented
in next section.

An interesting analysis is to understand the cause of the
noise although it may be complex and varied. A well known
explanation is the difference between perceived relevance
and intrinsic relevance[10] , where perceived relevance cor-
responds to a snippet while intrinsic relevance relates to a
document. While a user performs a click, she is mostly at-
tracted by a snippet but is generally not aware of whether
the corresponding document is relevant or not. Similarly, as
demonstrated in [21], there is a strong disagreement between
the judgement of snippet and that of the document itself. A
snippet may make an irrelevant document appear relevant,
or a relevant document appear irrelevant. However, a click
happens before a user examines the document thus it may
have some disagreement with the intrinsic relevance. This
disagreement will be characterized in our Noise-aware click
model.

Based on the data we use, one other cause of the noise
may be the difference between general search users’ con-
ception of relevance and the judges’, especially when search
users have multiple intents for the same query, such as an
informational query with an ambiguous meaning. However,
it is very hard to ask a judge to understand each intent for
each query. We are aware of this possible cause and that
numerous studies have documented this difference [5]. Thus
in a commercial HRS system, it adopts a multiple-judges
approach to alleviate this for ambiguous queries. For each
ambiguous query, it asks about three judges to give ratings
for all its corresponding documents based on as many in-
tents as they can be aware of. This approach may most
likely reduce the inconsistency and cover most intents from
general users. Another issue caused by the multiple judges is
their mutual disagreement. We studied a dataset and found
that if we calculate from the 5-level ratings:Bad, Fair, Good,
Excellent and Perfect respectively, the pair-wise consistency
is about 70%. However, if we only separate the ratings into
binary categories with Bad, Fair as irrelevant while the oth-
ers as relevant, the pair-wise consistency value increases to
more than 90%. This mean that, in most of the data, judges
can agree with each other; for the remaining small portion
of data with inconsistent ratings, we may use the majority
of this binary rating as the final rating.

Another cause of this noise may be related to the type of
queries. Given a set of navigational queries, users may have
a fairly consistent and clear idea of what they are looking
for, so the clicks among different users may be consistent and
informative for relevance inference. While for a navigational
query, users might represent more exploratory information
needs or situations where there is an uncertainty and lack
of domain knowledge. This may lead to more inconsistent
click behavior among users and more clicks on irrelevant
documents. This query type difference will be modeled by
our noise-aware click model via a query specific parameter.

4. NOISE-AWARE CLICK MODEL
In this section, we first present the model specifications

of NCM and then illustrate its extension to embrace the as-
sumptions of two state-of-the-art click models in Web Search.
Following this we introduce the inference of NCM to make



Feature Name Feature description
User class

AvgDwellTime The average dwell time of clicks for this user.
IntervalTime The average interval time between two clicks for this user.
UserSkip True if the user skips this document before.
UserClick True if the user clicks this document before.
UserFirstClick True if the user first clicks this document before.
UserLastClick True if the user last clicks this document before.
UserOnlyClick True if the user only clicks this document before.
FracQueryNoClick Fraction of queries with no clicks for this user.
FracQueryOneClick Fraction of queries with one click for this user.
FracQueryMultiClicks Fraction of queries with more than one clicks for this user.

Context class
SubmitTime The issued time of current query.
QuerySubsetPre True if current query is a subset of previous query.
QuerySupsersetPre True if current query is a superset of previous query.
QueryDistPre Edit distance between current query and previous query.
ClickInLastSession Whether there is a click in previous query session.
DwellTimeInLastSession The dwell time the user spends on last session (in seconds).
FirstQuery True if it is the first query in the search session.
TimeInSearch Time spent on the search engine so far (in seconds).
URLInSearch Number of URL in the search session so far.
QueryInSession Number of queries in the search session so far.
ClickInSession Number of clicks in the search session so far.
AvgTimeBetQueries Average interval time between two issued queries.
TimeToLastAction Time to last action such as submit a query or click.

Table 1: Features used in NCM.

it capable of learning from large-scale data and present its
prediction formula.

4.1 Model
The Noise-aware click model (NCM) introduces a random

variable N to characterize the noise degree of a click. There
are two extreme contexts for a click. In an extremely noisy
context with N = 1, users may click on irrelevant docu-
ments. While in a noise-free context, users tend to click on
relevant documents. With the limited HRS data as ground-
truth to represent a relevant or irrelevant rating of a docu-
ment, we may make the following two observations on this
noise factor:

• In a noise-free context with N = 0, users tend to skip
(i.e., not click) a document with a Bad or Fair rating.

• In an extremely noisy context with N = 1, a click
tends to be a noisy event that is not fully dependent
on document relevance.

Figure 2 is a NCM flow chart that illustrates the user be-
havior when examining a document at position i. It charac-
terizes two extreme contexts: The extremely noisy context
with Ni = 1 and the noise-free context with Ni = 0. Sup-
pose document dφ(i) is relevant to query q according to the
HRS rating. In a noise-free context, a user will examine it
and then click it with probability rφ(i). Here we do not as-
sume rφ(i) = 1 because this value is to be learnt via click
models. Also, if the document is irrelevant according to the
HRS rating, a user in a noise-free context tends to skip it.
On the other hand, in an extremely noisy context, the user
may be attracted by its snippet but click it according to a
parameter b no matter whether the document is relevant or
not, where b is a query-specific parameter. In either way,

Figure 2: The user click behavior of NCM

after the user makes her decision, she can choose to con-
tinue the examination of other documents or abandon the
current query session according to the assumptions defined
in traditional click models. It is worth noting that these two
extreme contexts are only formalized for the limited clicks
with HRS ratings. Meanwhile, we are to learn the noise
degree predictor by using the labeled documents in HRS
with features extracted from their corresponding clicks as
the training data. Thereafter, for the unlabeled clicks with-
out HRS ratings, the degree of noise will be predicted using
the predictor, i.e, calculating P (Ni = 1) according to the
contextual feature values.

To represent our assumptions in a probabilistic way, we
use a symbol Li to represent the binary rating of the i−th
document. Li = 1 indicates that the document at position



i has a relevant HRS rating to the query otherwise Li = 0.
We use Ni to represent the degree of noise in the context
when a user is examining the document at position i. Ni = 0
indicates that the click happens in a noise-free context while
Ni = 1 indicates that the context is extremely noisy. Under
these definitions, we use the following equations to represent
the above flow chart.

P (Ni = 1) = g(f1, f2, · · · , fn) (16)

P (Ci = 1|Ei = 0) = 0 (17)

P (Ci = 1|Ei = 1, Li = 1, Ni = 0) = rφ(i) (18)

P (Ci = 1|Ei = 1, Li = 0, Ni = 0) = 0 (19)

P (Ci = 1|Ei = 1, Ni = 1) = b (20)

In the above, rφ(i) indicates the click probability when a user
in a noise-free context examining the document at position
i and this document has a relevant HRS rating with Li = 1.
The fi represents each user behavior feature defined in Table
1 and g : Rn → R is a function that maps features to a value
indicating how noisy a context is. There are many kinds of
functions such as the logistic function and sigmoid function
which can be used to represent g. In our work, we define
g(fi) = Φ(

∑
wifi), where wi is the feature weight. Φ(x) =∫ x

−∞N(t; 0, 1)dt is the cumulative distribution function of
the standard normal distribution. It is also referred to as the
probit link [2]. We use it for convenience of inference and to
assure the probability value within an interval of [0, 1]. We
divide continuous feature fi into several buckets so that we
only need to consider binary features in the inference step.
Generally, the estimated relevance in our model is defined
as the probability of a click in a noise-free context given the
document has been examined.

The NCM model is general and can function under many
click models. Since it does not make any assumptions or
constraints in estimating the probability of examination, it
can be used with existing models based on the examination
hypothesis. In this paper, we apply it to two typical click
models, UBM and DBN, and adopt a Bayesian inference
method to learn the parameters.

4.2 Noise-aware UBM
Same as the NCM specifications, the Noise-aware UBM

model will introduce a random variable Ni to characterize
the noise of the context where a click happens. We denote
the noise-aware UBM as N-UBM with the following equa-
tions:

P (Ei = 1|C1:i−1 = 0) = β0,i (21)

P (Ei = 1|Cli = 1, Cli+1:i−1 = 0) = βli,i (22)

P (Ni = 1) = Φ(
∑

wifi) (23)

P (Ci = 1|Ei = 0) = 0 (24)

P (Ci = 1|Ei = 1, Li = 1, Ni = 0) = rφ(i) (25)

P (Ci = 1|Ei = 1, Li = 0, Ni = 0) = 0 (26)

P (Ci = 1|Ei = 1, Ni = 1) = b (27)

In N-UBM, the probability of Ni = 1 is calculated from
the probit function based on the feature values related with
the context. If a user is in a noise-free context where Ni = 0
and the document is with a relevant rating with Li = 1, the
click probability is determined by the examination proba-
bility P (Ei = 1) and a relevance parameter rφ(i). But if

the document has an irrelevant rating where Li = 0 un-
der a noisy-free context where Ni = 0, the click probability
is assumed to be 0. On the other hand, in an extremely
noisy context with Ni = 1, N-UBM assumes that a user will
click the document according to a query specific parameter b,
which is not characterized in traditional UBM assumptions.
For the value of P (Ni = 1), it will be calculated based on
the contextual feature values fi and the learnt weights wi,
which will be discussed in Section 4.4. After the user finishes
her action in this position, she will continue to examine the
following documents with probabilities related to β.

4.3 Noise-aware DBN
Similar to N-UBM model, the N-DBN model introduces

a random variable Ni to characterize the noise of a context.
When a user is in a noisy-free context, she will click the rel-
evant document (Li = 1) and skip the irrelevant document
(Li = 0) given that the document has been examined. If
the user is in an extremely noisy context, there is a query-
specific probability b that the document will be clicked, but
this click event is not dependent on the document relevance.
If the document is not clicked, there is a probability γ to ex-
amine the next document and 1− γ to abandon the search.
We can formalize the N-DBN model by following equations:

P (E1 = 1) = 1 (28)

P (Ci = 1|Ei = 0) = 0 (29)

P (Ni = 1) = Φ(
∑

wifi) (30)

P (Ci = 1|Ei = 1, Li = 1, Ni = 0) = rφ(i) (31)

P (Ci = 1|Ei = 1, Li = 0, Ni = 0) = 0 (32)

P (Ci = 1|Ei = 1, Ni = 1) = b (33)

P (Si = 1|Ci = 0) = 0 (34)

P (Si = 1|Ci = 1) = sφ(i) (35)

P (Ei+1 = 1|Ei = 0) = 0 (36)

P (Ei+1 = 1|Si = 1) = 0 (37)

P (Ei+1 = 1|Ei = 1, Si = 0) = γ (38)

4.4 Inference and Implementation
The parameter estimation of NCM is a two-stage proce-

dure due to the existance of HRS data. In the first stage,
we use the HRS data and the limited click data on the la-
beled documents to train a noise predictor to characterize
the degree of noise for a click, i.e. we estimate the value
of wi (i = 1, · · · , n). The predictor takes a feature vector
f and outputs a noise probability, i.e. Φ(wT f). Note that
the inference in this stage only involves the sessions for a
limited number of queries whose corresponding documents
have been judged in the HRS system.

In the second stage, we infer the click model on all search
sessions in the click-through logs. The training no longer de-
pends on the HRS judgements but moves on to all unlabeled
queries. We use the noise predictor obtained in the previous
stage and the contextual feature values to estimate the noise
degree of a context in which a click happens. This allows us
to more accurately simulate real user behavior and learn the
model parameters accordingly, such as the relevance param-
eters for each query-document pair. When the training is
completed, we are able to predict the noise degree of clicks
in future sessions based on both wi and related contextual
feature values fi (i = 1, · · · , n) . Next, we illustrate the im-
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Figure 3: Factor graph for updating parameters wi.

plementation of the two inference stages and the prediction
formula.

4.4.1 Stage 1: Training with HRS
In the first stage, the training data is the intersection of

click-through logs and HRS judgements. In other words,
we consider only the queries and documents for which the
relevance is judged. Given the noise-aware click model de-
fined in Section 4.1, let w and Θ be the parameters of the
model: w = (w1, · · · , wn) are coefficients of the noise pre-
dictor and Θ = (θ1, · · · , θm) are other probability param-
eters, including the relevance of each query-document pair
and the parameters with respect to model assumptions. We
employ an approximate Bayesian inference to estimate w
and Θ. The learning process is incremental: We load and
process search sessions one by one, and the data for each
session is discarded after they have been processed. Given a
new incoming session s, we update the distribution of each
parameter based on the session data and the click model.
Before the update, w and Θ have prior distributions p(w)
and p(Θ). We compute the likelihood function P (s|wi) and
P (s|θj), multiply each to the prior distribution and then de-
rive the posterior distribution p(wi|s) and p(θj |s). Finally,
these posteriors are used as priors in the processing of next
session.

With the Probit Bayesian Inference (PBI) technique in-
vented by Zhang et. al [26], we can smoothly update the
distribution of each θj . The update of each wi is somewhat
complicated because wi is a real number instead of a prob-
ability, which is incompatible with the PBI’s input format.
However, the problem can be solved by introducing an aux-
iliary variable y = wT f . Since Φ(y) is a probability, we first
apply PBI to derive the posterior distribution p(Φ(y)|s), and
then calculate p(y|s). Actually, PBI guarantees that p(y|s)
is always a Gaussian density. Furthermore, each p(wi|s) is
the marginal of the joint distribution p(y,w|s) after inte-

grating y and all other variables in w, denoted as w\i, so
we can calculate it by the following integration:

p(wi|s) ∝
∫

(

n∏
i=1

p(wi))p(y|w)p(s|y)dw\idy; (39)

p(s|y) ∝ p(y|s)
p(y)

=
p(y|s)∫

(
∏n
i=1 p(wi))p(y|w)dw

(40)

The Eq. (39) and Eq.(40) can be efficiently computed by
the sum-product message passing algorithm on the factor
graph (Figure 3), where (39) represents the leftward message
passing and (40) represents the rightward message passing.
A more detailed illustration of the message passing algo-
rithm can be found in [16].

When the training is completed, we can get a distribu-
tion for each wi. The inference procedure ensures that all
distributions are Gaussian, so we can assume that p(wi) =

N (wi;µi, σ
2
i ). Thus, given an arbitrary feature vector f , we

can predict the probability of noise by the expectation of
Φ(wT f):

P (N = 1) = E(Φ(wT f)) = Φ
( ∑n

i=1 µifi√
1 +

∑n
i=1 σ

2
i f

2
i

)
.

4.4.2 Stage 2: Training without HRS
In the second stage, the training data are the entire click-

through logs that mostly consist of unlabeled queries and
their corresponding documents. For the unlabeled click data
with Li unknown in this stage, we formulate the noise-aware
click probability as:

P (Ci = 1|Ei = 0) = 0; (41)

P (Ci = 1|Ei = 1) = P (Ni = 0)rφ(i) + P (Ni = 1)b; (42)

Here, P (Ni = 0) = 1− P (Ni = 1) is given by the predictor
trained in Stage 1. Since parameter rφ(i) is exactly the click-
through rate of dφ(i) after examined by a user in a noise-free
context, it is the value of the document relevance and will
be used for predicting future clicks in Section 4.5

Again, we employ the Probit Bayesian Inference (PBI) to
perform parameter estimation. The inference is simpler than
that in Stage 1 since wi are constant values at this stage,
and all other parameters are probability values. Thus, we
use PBI to go through the whole data set and derive the
probability distribution for each parameter. In most cases,
the variance of such distribution converges to zero, so we get
a numerical estimation after the training. If the variance is
still large, we compute the expectation of the parameter to
achieve a numerical estimation. The detailed formulas are
also given in [26].

4.5 Prediction
Given a test session, the probability distribution of a click

event in this session at position i can be calculated by the
formula below:

P (Ci = 1) = P (Ei = 1)((1− Φ(
∑

wifi))rφ(i) + Φ(
∑

wifi)b)

In N-DBN, P (Ei = 1) is calculated as the below equations:

P (E1 = 1) = 1 (43)

P (Ei+1 = 1) = (1− P (Ci = 1)sφ(i))γ (44)

In calculating P (Ei = 1) for N-UBM, we need to consider
the probability of clicks in each position above it. If there
exists at least one click above, it enumerates the latest click
position j above the position i. Then, we can calculate it by
the equation below:

P (Ei = 1) = P (C1:(i−1) = 0)β0,i+ (45)

i−1∑
j=1

P (Cj = 1)P (C(j+1):(i−1) = 0)βj,i

5. EXPERIMENTAL RESULTS
In this section, we evaluate the NCM model by comparing

it with two state-of-the-art click models in Web search. As
we implement our NCM to embrace the assumptions of these
two models, the reformulated models, i.e., the Noise-aware
DBN and the Noise-aware UBM, are denoted as N-DBN
and N-UBM respectively. We use perplexity and normalized
discounted cumulative gains (NDCG) [15] to evaluate the
performance of different click models.



5.1 Experimental Data
Click log data: The query sessions used to train and

evaluate the click models are collected from a commercial
search engine in the U.S. market in English from January
1st to January 31st in 2011. Several query sessions from one
user may belong to the same search session, thus we uses a 30
minutes inactivity time interval to separate any two search
sessions. For each query session, we extract contextual in-
formation from other query sessions appearing before and
in the same search session. We collect the values for each
feature in Table 1. In order to prevent the whole dataset be-
ing dominated by some extremely frequent queries, we limit
the number of query sessions for each query to 104. When
calculating perplexity, we use the first 15 days of data as the
training data and the rest 16 days of data as the test data. In
total, we collect approximately 380 million distinct queries
and 1.17 billion query sessions. The detailed information
about the dataset is summarized in Table 2.

HRS data: The details of the HRS data have already
been introduced in Section 3. We provide its distribution
over query frequency in table 2. Overall, there are 12, 150
queries which appear in both the HRS data and the click
data. For each query, there are 39 judged documents on
average. While we are training the NCM in the stage 1, we
treat the rating of Bad or Fair as irrelevant, and the other
three ratings (Good, Excellent and Perfect ) as relevant.

Figure 4: N-UBM & UBM perplexity Over Position

5.2 Perplexity
After the click model estimates its parameters while in

training, as illustrated in Section 4.5, we can predict the
click probabilities in the test query sessions. We evaluate
the prediction accuracy by click perplexity, which has been
widely used to measure the quality of click models[8, 12, 28].
A smaller perplexity indicates a better prediction accuracy
and the optimal value is 1.0. For a given position i and a
set of query sessions s1, s2, · · · , sn, we use c1, c2, · · · , cn to
denote the binary click events of the i-th document in each
query session. Let q1, q2, · · · , qn denote the predicted click
probability by the click model. The perplexity pi for the

Figure 5: N-DBN & DBN perplexity Over Position

position i is:

pi = 2−
1
n

∑n
i=1(ci log2 qi+(1−ci) log2 qi) (46)

The perplexity of the entire dataset is averaged over all po-
sitions, and the improvement of perplexity value pa over pb
is calculated as (pb − pa)/(pb − 1)× 100% [12].

In Figure 4 and 5, we report the perplexity of N-DBN
vs. DBN, and N-UBM vs. UBM on the testing dataset
over different positions. The experimental results clearly
show that N-UBM and N-DBN consistently outperform the
original UBM and DBN respectively. We also provide the
overall results in Table 3. The overall relative improvements
of N-DBN over DBN and N-UBM over UBM are 30.4% and
33.9% respectively. This is particularly notable given that
the dataset we used is a billion-scale one from a commer-
cial search engine. Next, we separate queries into six groups
as Table 2 based on the number of times that each query
appears in the training sessions, calculate the overall per-
plexity for each group, and show the results in Figure 6. If
we look at the two solid lines, it clearly shows that the N-
DBN consistently outperforms DBN at all frequency level.
Meanwhile, if we look at the two dash lines, N-UBM also
consistently performs better than UBM. It is worth noting
that the relative improvement of the high frequency group
is much larger than that of the low frequency group due to
a difference in dominator in the calculation. For example,
the relative improvement of N-DBN over DBN in the first
group with the lowest frequency is 20.4% while that of the
last group with the highest frequency is 48.9%.

5.3 Ranking Performance
In this part of experiments, we sort the documents with

respect to the estimated relevance given by a click model,
and compare the ranking result with the ideal ranking in
the HRS judgement data. In this case, the relative order of
estimated relevance is more important than value.

We use NDCG to evaluate our ranking results. NDCG is a
well-known metric which measures the gap between the cur-
rently available ranking and the theoretically ideal ranking.



Query Frequency #HRS Query #HRS Rating #Query in Train #Session in Train #Query in Test #Session in Test
1 ∼ 3 1,726 33,079 157,202,923 179,610,940 181,477,994 207,287,519

3 ∼ 101 2,329 57,201 18,777,342 84,904,526 21,617,259 97,766,874

101 ∼ 102 3,858 106,082 3,688,839 93,883,180 4,275,037 109,035,850

102 ∼ 103 2,439 118,224 332,590 84,461,513 386,995 97,924,566

103 ∼ 104 1,089 86,970 30,794 76,442,296 35,363 87,544,334

> 104 719 72,629 2729 27,290,000 2985 29,850,000
Total 12,150 474,185 180,032,217 546,592,455 207,795,633 629,409,143

Table 2: The summary of the data set collected from one month in Jan 2011.

Model Perplexity NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

DBN
N-DBN 1.2182 0.738 0.724 0.727 0.740 0.753
DBN 1.2846 0.651 0.641 0.648 0.656 0.663

Improvement 30.4% 13.2% 12.9% 12.3% 12.6% 13.5%

UBM
N-UBM 1.1859 0.700 0.698 0.707 0.714 0.718
UBM 1.2490 0.609 0.618 0.631 0.643 0.650

Improvement 33.9% 14.9% 13.0% 12.0% 11.1% 10.5%

Table 3: Detailed experimental results for different click models.

Figure 6: Perplexity Over Frequency

For a given query q, the results are sorted by the decreasing
order of estimated relevance, and then the NDCG is calcu-
lated as

NDCG@i =
1

IdealDCG@i

i∑
j=1

2gi − 1

log 1 + j
, (47)

where IdealDCG@i is the maximum DCG over all possible
rankings. gi is the HRS judgement of the i-th document. It
represents judges’ rating on the relevance of the document to
q. Note that for those documents which have no rating, we
treat them as gi = 0. For the whole HRS data, we randomly
pick half of the queries into the training of the stage 1 and
leave the other half of the queries as the evaluation queries
to calculate the NDCG.

We show the detailed NDCG results (at different posi-
tions) for DBN, N-DBN, UBM and N-UBM in Table 3. The
results show that the noise-aware models have significant im-
provements over the original models in terms of NDCG. The

Figure 7: Imp of NDCG@3 over query frequency.

improvements at all positions are over 10%. These results
demonstrate that after taking click noise into consideration
by the NCM model, clicks models can infer a more accurate
document relevance. We perform a t-test to verify the sig-
nificance. The result shows that the P-values of t-test are all
less than 0.01, which confirms that the estimated relevance
from N-DBN and N-UBM is consistently and significantly
better than that from DBN and UBM respectively.

To investigate the variance of NDCG over different query
frequencies, we recalculate the NDCG@3 improvements over
frequency. The results are shown in Figure 7. This exper-
iment continues to verify the consistent improvements over
different frequency. The improvement of high frequency
group is more significant than that of the low frequency
group. This may be attributed to the property that high-
frequency queries can usually provide more sufficient infor-
mation for the NCM model to better understand click noise.



6. CONCLUSION
In this paper, we have introduced a noise-aware model to

capture the noisiness of a click which causes the learning
model to weight differently the user click observation. We
design the NCM by complementing click data with the HRS
data and characterizing the context in which a user performs
her click decision. NCM is a general model to embrace the
assumptions in most existing click models. We have success-
fully extended it to embrace the assumptions of two typical
click models and formalized the new models as N-UBM and
N-DBN. We have designed a Bayesian inference approach to
make NCM capable of processing large-scale click data. The
billion-scale experimental results demonstrate the necessity
to account for uninformative click noise and identify good
click data in learning a click model.

NCM is initially designed as a semi-supervised model to
learn the click data with limited human labeled data. It is
actually a very general model to learn for two inconsistent
objectives, like the HRS based objective and click likelihood
based objective in this paper. This two-stage approach in
NCM is also suitable for addressing the problem of a limited
number of samples for one objective, like the HRS based
objective with a limited size.
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